你可能在科学博物馆或探索博物馆或技术探索中见过这些装置,有一个绘图表面和摆锤的一些安排,用笔在绘图表面上触摸纸张,开始运动,它画出这些漂亮的图画,本质上是衰减的李萨如图形 (Lissajous)。Lissajous图形经常出现在以前的科幻电影中,在一个示波器上,你可以在x,y轴上应用不同频率的正弦波。
ASP站长网当我还是个小男孩的时候,我读到过这些故事,于是我在一个昏暗的房间里,用三根线把一个手电筒从天花板上吊下来,在地板上设置了一个定时曝光的摄像头,对着晃动的手电筒,创造了我自己的手电筒。当我接触到具有图形功能的计算机时,我编写了数学模拟程序。
Python代码:Pygame中的谐波图
6个衰减的正弦波,每轴3个(x和y)(即 3-pendula )
用q键退出,用s键截屏
使用PyGame进行IO。
Pygame中的谐波图代码如下:
import pygame
import sys
import time
import tempfile
from math import pi, sin, cos
from pygame.locals import *
pygame.init()
p2=1.57
p4=p2/2.0
# Edit these:
ax = [-2,2,0]
ay = [1.5,1.5,0]
fx = [-1,.99,.5]
fy = [.99,1,.49]
px = [0,p2,0]
py = [p4,0,0]
dd=0.00003
black=(0,0,0) # Fore- and background colors
white=(255,255,255)
bg=black
fg=white
inc=0.04
width,height=1024,768 # Window size
aspect=width/height*1.0
yscale=120
xscale=yscale*aspect
d=1 # resolution
screen = pygame.display.set_mode((width,height)) # You can add FULLSCREEN as last parameter
screen.fill(bg)
t=0.0 # angle for sin
first=True
while 1:
for event in pygame.event.get():
if event.type == QUIT:
sys.exit()
elif event.type == KEYDOWN and event.key == K_q:
sys.exit()
elif event.type == KEYDOWN and event.key == K_SPACE:
restart=True
elif event.type == KEYDOWN and event.key == K_s:
pars="a,f,p(x,y)="+str(ax)+str(ay)+str(fx)+str(fy)+str(px)+str(py)
myfont = pygame.font.SysFont("monospace", 15)
label = myfont.render(pars, 1, (100,100,100))
screen.blit(label, (100, height-15))
tf=tempfile.NamedTemporaryFile(prefix='hg', suffix='.jpg', dir ='.', delete=False)
pygame.image.save(screen, tf.name)
# calculate next x,y point along line
x = xscale * d * (ax[0]*sin(t * fx[0] + px[0]) +
ax[1]*sin(t * fx[1] + px[1]) +
ax[2]*sin(t * fx[2] + px[2])) + width/2
y = yscale * d * (ay[0]*cos(t * fy[0] + py[0]) +
ay[1]*cos(t * fy[1] + py[1]) +
ay[2]*cos(t * fy[2] + py[2])) + height/2
d = d - dd
if not first: # ignore any complaint about prev_x,y being undefined
pygame.draw.aaline(screen, fg, (x, y), (prev_x, prev_y), 2)
else:
first=False
prev_x = x # save x,y for next line segment start
prev_y = y
pygame.display.update()
t+=inc # increment angle for sin