自动化使用技术来增强人类在无数任务中的工作量。在物流中,自动化的潜力是巨大的,而且好处是显着的,尤其是当运营经历巨大变化或需求增加时。扩大运营规模通常需要额外的员工,而这些员工通常无法立即投入使用,尤其是在其他行业也有需求的时候。对市场波动做出快速反应需要整个运营过程中的快速行动和额外的能力。

随着需求的变化,物流自动化可以使产能快速增长。如果有策略地使用,物流自动化可以提高生产率,减少人为错误,提高工作效率。在适当的物流自动化软件、硬件和平台资源到位的情况下,在低需求时期对运营支出的影响是最小的,远远低于维持大量的人力资源。随着需求的增加,产能已经到位,随时可以启动。虽然这给了物流公司对需求变化做出快速反应所需的灵活性,但也有机会做得更多。

人工智能放大物流自动化影响

将人工智能 (AI) 引入物流自动化会放大人工智能的影响。 AI 减少了常见的半技能任务(例如对产品进行分类和分类)中的错误。例如,自主移动机器人 (AMR) 可以改善包裹递送,包括通常最昂贵的最后一公里递送。 AI 帮助 AMR 进行路线规划和特征识别,例如人员、障碍物、交付门户和门口。

将物流自动化集成到任何环境中都会带来挑战。它可以像用动力传送带替换重复过程一样简单,也可以像将协作、自主机器人引入工作场所一样复杂。当人工智能被添加到这个自动化和集成过程中时,挑战变得更加复杂,但好处也会增加。

随着解决方案变得更加互联并且更加了解流程中的所有其他阶段,各个自动化元素的效率也会提高。将 AI 靠近生成数据和采取行动的位置,称为边缘 AI。边缘人工智能的采用已经重新定义了物流自动化。

Edge AI 发展迅速,其用途不仅限于物流自动化。将人工智能置于网络边缘的好处必须与资源的可用性相平衡,例如电力、环境操作条件、物理位置和可用空间。

边缘推理

边缘计算使计算和数据更紧密地结合在一起。在传统的物联网应用中,大多数数据通过网络发送到(云)服务器,在那里处理数据,并将结果发送回网络边缘,例如物理设备。仅云计算会带来延迟,这在时间关键的系统中是不可接受的。边缘计算发挥作用的一个例子是,在分拣过程中捕获和处理本地包裹的图像数据,使物流自动化系统在0.2秒内做出响应。系统这一部分的网络延迟会减慢排序过程,但边缘计算正在消除这个潜在的瓶颈。

虽然边缘计算使计算更接近数据,但将人工智能添加到边缘可以使过程更加灵活,甚至更不容易出错。同样,最后一公里的物流在很大程度上依赖于人类,但使用边缘 AI 的 AMR 也改善了这一点。

增加人工智能对物流自动化中使用的硬件和软件有重大影响,而且有越来越多的潜在解决方案。通常,用于训练人工智能模型的解决方案并不适合在网络边缘部署模型。用于训练的处理资源是为服务器设计的,其中电源和内存等资源几乎是无限的。在边缘,算力与存储都是有限的。

dawei

【声明】:九江站长网内容转载自互联网,其相关言论仅代表作者个人观点绝非权威,不代表本站立场。如您发现内容存在版权问题,请提交相关链接至邮箱:bqsm@foxmail.com,我们将及时予以处理。